博彩-玩博彩策略论坛

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

百家乐官网赌博外挂| 安徽省| 澳门百家乐官网规| 百家乐牌桌订做| 濉溪县| 巴比伦百家乐的玩法技巧和规则| 正蓝旗| 威尼斯人娱乐城澳门威| 新锦江百家乐官网娱乐场开户注册| 日博| 澳门百家乐打法精华| 百家乐官网分析网| 赢家百家乐的玩法技巧和规则| 百家乐官网ag厅投注限额| 海威百家乐赌博机| 自贡百家乐官网赌场| 顶级赌场下载| 百家乐投住系统| 百家乐官网平注法到| 皇冠网络刷qb软件| 百家乐论坛香港马会| 网上百家乐官网游戏下载| 平江县| 新澳博百家乐的玩法技巧和规则| 百家乐官网园百利宫娱乐城怎么样百家乐官网园百利宫娱乐城如何 | 永利高| 百家乐牌路分析仪| 网上赌百家乐官网有假| 百家乐官网筹码方| 陵川县| 百家乐断缆赢钱| 盈得利百家乐官网娱乐城| 百家乐官网赌博大赢家| 博E百百家乐官网娱乐城| 正规百家乐游戏下载| 百家乐官网小音箱| 至尊百家乐官网2014| 玛纳斯县| 百家乐路子分析| 保险百家乐官网怎么玩 | 真人百家乐官网技巧|