博彩-玩博彩策略论坛

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
百家乐长龙怎么预判| 百家乐官网不锈钢| 百家乐官网2棋牌作弊软件| 阳宅24山流年吉凶方位| 大发888娱乐场下载最高| sz全讯网网站xb112| 梅州市| 太阳城百家乐出千技术| 百家乐官网电话投注多少| 免费百家乐计划| 福布斯百家乐官网的玩法技巧和规则| 大发888手机版下载| 百家乐官网发牌盒子| 温州市百家乐官网ktv招聘| 百家乐视频下载| 六合彩预测| 百家乐看单技术| 百家乐官网是如何骗人的| 最佳场百家乐官网的玩法技巧和规则 | 真人百家乐什么平台| 吉林省| 百家乐那个娱乐城信誉好| 百家乐官网乐赌| 咸宁市| 威尼斯人娱乐场| 属虎与属鼠做生意好吗| 百家乐官网软件代打| 蓬溪县| 百家乐如何赚洗码| 澳门百家乐代理| 百家乐官网代理每周返佣| 澳门顶级赌场| 真人百家乐赌注| 大发888注册账号| 澳门百家乐赢技巧| 桃园市| 澳门百家乐官方网站破解百家乐技巧| 24山方位 子孙 文昌| 百家乐官网现金网平台排行| 皇冠网遮天小说| 百家乐筹码桌布|