博彩-玩博彩策略论坛

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
大发888娱乐城注册送筹码| 推二八杠技巧| 狮威百家乐官网娱乐平台| 缅甸百家乐娱乐场开户注册| 田林县| 百家乐赌场详解| 网上百家乐官网好玩吗| 真人百家乐对决| 百家乐官网筹码订做| 什么事百家乐的路单| 迪威百家乐娱乐平台| qq百家乐官网网络平台| 大发888开户注册| 做生意门朝东好吗| 什么棋牌游戏能赚钱| 赌百家乐的心得体会| 百家乐官网三路秘诀| 百家乐筹码| 网上玩百家乐好吗| 百家乐官网游戏规则玩法| 大发888国际娱乐bet| 百家乐官网2号干扰| 网上赌百家乐的玩法技巧和规则| 百家乐官网多少钱| 如皋市| 全讯网找a3322.com| 真人百家乐宣传| KK娱乐| 大发888在线赌场网站| 百家乐信誉平台现金投注| 百家乐官网tt娱乐城| 皇冠现金网去hgttt| 百家乐在线洗码| 百家乐开庄概率| 百家乐官网龙虎台布多少钱| 阳西县| 娱乐城彩金| 尊龙百家乐赌场娱乐网规则| 太阳城百家乐坡解| 百家乐路单资料| 伟博百家乐官网娱乐城|