博彩-玩博彩策略论坛

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
鼎尚百家乐的玩法技巧和规则| 百家乐官网分析仪博彩正网| 威尼斯人娱乐城备用网址| 威尼斯人娱乐棋牌平台| 百家乐官网体育宝贝| 澳门百家乐公试打法| 稳赢至尊| 百家乐这样赢保单分析| 五张百家乐官网的玩法技巧和规则| 江陵县| 大发888官方指定下载| 百家乐官网稳赢战术技巧| 尼木县| 百家乐为什么庄5| 做生意的怎样招财| 百家乐官网娱乐网站| 威尼斯人娱乐城老品牌lm0| 百家乐真人游戏网| 百家乐官网tt赌场娱乐网规则 | 金公主百家乐现金网| 百家乐官网软件骗人吗| 百家乐信誉平台开户| 百家乐官网赢钱的技巧是什么| 凌龙棋牌游戏大厅| 威尼斯人娱乐城购物| 丽星百家乐的玩法技巧和规则| 澳门百家乐大家乐眼| 百家乐官网编单短信接收| 金沙国际娱乐城| 百家乐庄闲路| 百家乐2号技术| 澳门百家乐官网打法百家乐官网破解方法 | 百家乐现金游戏注册送彩金| 百家乐视频软件| 澳门百家乐官网是骗人的| k7娱乐城开户| 百家乐导航| 百家乐官网分析资料| 类乌齐县| 免费百家乐官网在线| 百家乐官网透视牌靴|