博彩-玩博彩策略论坛

今天是
今日新發布通知公告0條 | 上傳規范

【百家大講堂】第240期:空天地一體化車聯網資源管理中的增強學習

發布日期:2019-09-18

講座題目:空天地一體化車聯網資源管理中的增強學習

Reinforcement Learning for Resource Management in Space-Air-Ground (SAG) Integrated Vehicular Networks

報 告 人:沈學民(教授、加拿大工程院院士)

時   間:2019年9月28日(周六)14:30-16:00

地   點:中關村校區信息科學實驗樓205會議室

主辦單位:研究生院、信息與電子學院

報名方式:登錄北京理工大學微信企業號---第二課堂---課程報名中選擇“【百家大講堂】第240期:空天地一體化車聯網資源管理中的增強學習”

【主講人簡介】

  沈學民是加拿大滑鐵盧大學電氣與計算機工程系教授,兼任研究生教學委員會委員。沈博士的研究重點是無線資源管理、無線網絡安全、智能電網、車聯網和傳感器網絡。他是 IEEE IoT J 的總主編。他擔任 Mobihoc'15 的總主席,IEEE Globecom 16、IEEE INFOCOM'14、IEEE VTC'10、IEEE ICC'10 、IEEE Globecom'07 的技術委員會主席、IEEE 通信協會無線通信技術委員會主席。沈博士是當選的IEEE 通信協會出版分會的副主席,IEEE通信協會杰出講師評選委員會委員,以及IEEE通信協會會士評審委員會委員。沈博士于2006年獲得優秀研究生監督獎,2003年獲得加拿大安大略省總理研究卓越獎(PREA)。沈博士是加拿大安大略省注冊專業工程師、IEEE會士、加拿大工程學會院士、加拿大工程院院士、加拿大皇家學會院士和 IEEE 車輛技術協會和通信協會的杰出講師。

 

Xuemin (Sherman) Shen is a University Professor, and Associate Chair for Graduate Study, Department of Electrical and Computer Engineering, University of Waterloo, Canada. Dr. Shen's research focuses on wireless resource management, wireless network security, smart grid and vehicular ad hoc and sensor networks. He is the Editor-in-Chief of IEEE IoT J. He serves as the General Chair for Mobihoc'15, the Technical Program Committee Chair for IEEE Globecom'16, IEEE Infocom'14, IEEE VTC'10, the Symposia Chair for IEEE ICC'10, the Technical Program Committee Chair for IEEE Globecom'07, the Chair for IEEE Communications Society Technical Committee on Wireless Communications. Dr. Shen is an elected IEEE ComSoc Vice President - Publications, the chair of IEEE ComSoc Distinguish Lecturer selection committee, and a member of IEEE ComSoc Fellow evaluation committee. Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the Premier's Research Excellence Award (PREA) in 2003 from the Province of Ontario, Canada. Dr. Shen is a registered Professional Engineer of Ontario, Canada, an IEEE Fellow, an Engineering Institute of Canada Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of Canada Fellow, and a Distinguished Lecturer of IEEE Vehicular Technology Society and Communications Society.

 

【講座信息】

  空-天-地一體化車聯網是一種非常多樣化的車聯網,其可在任何地方、任何環境條件、和任何時間突發的事件下同時保證超可靠性的低延遲通信并提供高帶寬流量。另一方面,要同時有效地管理和分配地面網絡、空中網絡和空間(衛星)資源面臨巨大挑戰,因為它們在延遲、吞吐量和覆蓋范圍方面具有異構訪問特性。此外,車輛的高機動性和實時決策要求進一步使問題難以解決。在本次報告中,我們提出在空-天-地一體化車聯網中使用強化學習進行資源管理,從而實現自適應訪問控制、按需無人機部署和無人機軌跡設計的無模型、快速決策。我們還將展示我們的空天地模擬器和一些演示結果。

 

Space-Air-Ground integrated Vehicular Network (SAGVN) is a prominent paradigm to provide an extremely versatile vehicular network that can simultaneously guarantee ultra-reliability low-latency communications (URLLC) and deliver high-bandwidth traffic anywhere, any environment condition, and any event at anytime. However, it is challenging to manage and allocate the terrestrial network, aerial network (UAV), and space (satellite) resources simultaneously and efficiently, as they have heterogeneous access features in terms of delay, throughput, and coverage range. In addition, high vehicle mobility and real-time decision requirement further render the problem intractable. In this talk, we advocate the usage of reinforcement learning for resource management in SAGVN, which can enable model-free and fast decision makings for adaptive access control, on-demand UAV deployment, and UAV trajectory design. We will also show the detail development of our SAG simulator and some demos.


七胜百家乐官网赌场娱乐网规则 | 百家乐官网打水套利| 博彩网百家乐全讯网| 百家乐官网全部规| 百家乐官网缆的打法| 大发888信用| 百家乐博彩通| 网上百家乐官网大转轮| 外围赌球网站| 百家乐一般的庄闲比例是多少| 破战百家乐官网的玩法技巧和规则| 都兰县| 德州扑克专业版| 威尼斯人娱乐城真钱游戏| 百家乐能战胜吗| 百家乐官网秘| 龙虎斗游戏| 大发8888游戏平台| 万达百家乐官网娱乐城| 保单机百家乐官网破解方法| 威尼斯人娱乐城网址是什么| 温州市百家乐官网ktv招聘| 宝马会在线娱乐城| 德州扑克外挂| 大发888客户端下载| 百家乐技巧心| 南宁百家乐的玩法技巧和规则| 百家乐中P代表| 缅甸百家乐官网视频| 怎样玩百家乐官网的玩法技巧和规则| 百家乐官网平7s88| 百家乐官网娱乐城新闻| k7线上娱乐| 现金棋牌网站| bet365.com| 大发888怎么能不卡| 百家乐菲律宾| 百家乐娱乐平台真钱游戏| 揭秘百家乐百分之50| 玩百家乐必赢的心法| 乐天堂百家乐娱乐|