博彩-玩博彩策略论坛

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

娱乐城注册送彩金| 在线老虎机| 威尼斯人娱乐代理注测| 游戏机百家乐官网作弊| 百家乐官网tt娱乐城| 岳阳县| 百家乐只打一种牌型| 云鼎百家乐官网注册| 皇冠网代理| 百家乐最好的投注法| 项城市| 威尼斯人娱乐场送1688元礼金领取lrm| 百家乐官网网络真人斗地主| 大发888客服| 易学24山3d罗盘App| 黑龙江省| 真人游戏网站| 开百家乐官网骗人吗| 曼哈顿娱乐城信誉| 百家乐官网娱乐注册就送| 大发888娱乐场优惠| 路单百家乐官网的玩法技巧和规则 | 全讯网百家乐的玩法技巧和规则 | 夹江县| 风水上看做生意养金毛好吗| 百家乐博牌规| 澳门百家乐路子分析| 缅甸百家乐官网网络赌博解谜| 能赚钱的棋牌游戏| 圣安娜百家乐包杀合作| 至尊百家乐官网娱乐| 贵溪市| 免费百家乐统计| 百家乐正网包杀| 代理百家乐官网试玩| 百家乐官网在线投注顺势法| 大发888娱乐城pt| 澳门百家乐官网上下限| 东莞水果机遥控器| 木棉百家乐的玩法技巧和规则 | 百家乐赌博策略大全|