博彩-玩博彩策略论坛

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网游戏规测| 百家乐官网大西洋城v| 澳门百家乐官网哪家信誉最好| 百家乐官网制胜方法| 百家乐路单之我见| 百家乐官网太阳城球讯网| 澳门百家乐官网手机软件| rmb百家乐的玩法技巧和规则 | 百家乐官网九| 威尼斯人娱乐城投注| 澳门百家乐官网论谈| 网上百家乐官网乐代理| 博彩老头排列三| 太阳百家乐官网3d博彩通| 御匾会百家乐官网的玩法技巧和规则| 德晋百家乐的玩法技巧和规则| 望城县| 明陞百家乐官网娱乐城| 大发888娱乐城客服电话| 百家乐官网桌手机套| 百家乐怎么玩请指教| 百家乐官网沙| 太阳城在线娱乐城| 博天堂百家乐官网官网| 威尼斯人娱乐城 2013十一月九问好| 加州百家乐官网的玩法技巧和规则| 大发888官网df888esbgfwz| 稳赢的百家乐投注方法| 敦煌市| 长乐坊百家乐娱乐城| 皇冠网投| 百家乐游戏机博彩正网| 闲和庄百家乐官网娱乐平台| 伊川县| 赢波娱乐| 免费百家乐官网追号软件| 百家乐官网真钱游戏下载| 大发888注册送| 百家乐闲庄概率| 乐宝百家乐官网娱乐城| 百家乐返水1.2不限|