博彩-玩博彩策略论坛

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网视频计牌器| 博彩网百家乐中和局| 走地皇娱乐城| 百家乐官网娱乐分析软件v| 伯爵百家乐官网赌场娱乐网规则| 吉利百家乐的玩法技巧和规则| 爱赢百家乐官网现金网| 正品百家乐地址| 菲律宾百家乐官网娱乐网| 百家乐园zyylc| 南城县| 百家乐官网论坛官网| 百家乐输惨了| 菲律宾百家乐官网娱乐| 大发888更名网址622| 百家乐官网波音平台路单| 凱旋门百家乐的玩法技巧和规则 | 大哥大百家乐官网的玩法技巧和规则 | 太阳城网上| 利都百家乐官网国际娱乐| 大发888玩家论坛| 百家乐官网视频游戏视频| 中原百家乐的玩法技巧和规则| 百家乐官网平台开户哪里优惠多| 百家乐园首选去澳| 最好的百家乐官网论坛| 百家乐网站制作| 百家乐官网娱乐平台备用网址 | 百家乐官网园百利宫娱乐城信誉好... | 大发888有哪些| 大世界百家乐官网娱乐| 台东县| 怎么看百家乐官网的路| 大发888客户端的软件| 百家乐娱乐城主页| 百家乐官网视频游戏盗号| 大连娱网棋牌步步为赢| 阴宅24水口| 网上百家乐官网导航| YY百家乐的玩法技巧和规则| 博彩百家乐官网画谜网|