博彩-玩博彩策略论坛

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


大发888在线娱乐合作伙伴| 百家乐视频游戏视频| 六合彩 开奖| 百家乐官网娱乐下载| 百家乐有送体验金| 星河百家乐官网现金网| 百家乐官网冼牌机| 盈乐博| 澳门百家乐园游戏| 环球棋牌评测网| 足球百家乐投注| 百家乐官网可以算牌么| 大发888娱乐城m88| 澳门百家乐官网博| 博九网| 百家乐五种路单规| 百家乐官网有没有破解之法| 大发888在线娱乐城代理| 百家乐分析概率原件| 在线百家乐官网博彩| 顶尖百家乐的玩法技巧和规则| 百家乐官网家居 | 百家乐二号博彩正网| 百家乐官网全自动分析软件| 大发888手机游戏| 百家乐看图赢钱| 真人百家乐好不好玩| 云赢百家乐官网分析| 绥芬河市| 真人百家乐游戏网| 大发888娱乐场下载dafaylcdown | 威尼斯人娱乐城客户端| 爱赢百家乐开户送现金| 博彩百家乐官网带连线走势图| 百家乐官网无敌直缆| 做生意挂什么画招财| 百家乐官网视频软件下载| 百家乐赢退输进有哪些| 新宝百家乐网址| K7百家乐官网的玩法技巧和规则| 百家乐官网赌博是否违法|