博彩-玩博彩策略论坛

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

广东百家乐主论坛| 百家乐线路图分析| 百家乐游戏分析| 百家乐技巧| 百家乐补牌规律| 娱乐城百家乐官网规则| 金域百家乐的玩法技巧和规则| 百家乐官网筹码价格| 大发888 备用6222| 澳门百家乐上下限| 香港百家乐官网赌场| 百家乐官网发脾机| 志丹县| 威尼斯人娱乐城老品牌lm0| 王子百家乐官网的玩法技巧和规则 | 百家乐实战玩法| 半圆百家乐官网桌布| 皇冠平台| 全讯网5532888| 金榜百家乐现金网| 百家乐官网桌定制| 太仆寺旗| 娱乐城注册送现金58| 威尼斯人娱乐棋牌平台| 九州百家乐娱乐城| 24山吉凶视频| 百家乐官网3珠路法| 豪杰百家乐官网游戏| 赌博| 八大胜国际娱乐| 大发888娱乐场开户| 百家乐网| 百家乐筹码免运费| 百家乐翻天粤语版| bet365体育投注| 大发888电话多少| 优博百家乐的玩法技巧和规则| 百家乐澳门规矩| 百家乐微笑不倒| 百家乐赌博机假在哪里| 百家乐博彩优惠论坛|