博彩-玩博彩策略论坛

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

海立方娱乐城线路| 真人百家乐导航| 百家乐赌场占多大概率| 百乐门线上娱乐| 百家乐单跳投注法| 皇冠足球投注| 百家乐平注法到656| 百家乐分析软体| 百家乐官网2号技术打法| 百家乐官网那里玩| 真龙娱乐| 百家乐官网的规则博彩正网| 百家乐官网可以作假吗| 凯时娱乐城官网| 998棋牌游戏中心| 红宝石百家乐娱乐城| 迪士尼百家乐官网的玩法技巧和规则 | 渭南市| 百家乐软件代理| 在线百家乐官网大家赢| 凯时娱乐城官网| 德州扑克 术语| 大发888下载df888| 澳门百家乐怎么玩| 大玩家百家乐的玩法技巧和规则 | 博彩百家乐官网字谜总汇二丹东| 百家乐官网游戏分析| sz新全讯网网站112| 百胜百家乐软件| 百家乐赌场导航| 合肥百家乐官网赌博机| 儋州市| 豪博娱乐城| 皮山县| 百家乐官网家居| 澳门赌百家乐官网能赢钱吗| 自贡百家乐官网赌场| 百威百家乐的玩法技巧和规则| 百家乐珠仔路| 百家乐平点| 至尊百家乐娱乐场开户注册|