博彩-玩博彩策略论坛

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

威尼斯人娱乐城网络博彩| 百家乐官网游戏机压法| 永利百家乐官网娱乐场| 大发888国际游戏平台| 大发888国际游戏平台| 百家乐官网赚钱项目| 图们市| 百家乐官网必胜绝技| 神娱乐百家乐官网的玩法技巧和规则 | 屯留县| 澳门百家乐娱乐城开户| 属狗与属猪能做生意吗| 大发888怎么玩才赢| 凌云县| 网络百家乐破| 伟博百家乐官网现金网| 百家乐官网磁力录| 百家乐官网追号| 澳门档百家乐的玩法技巧和规则 | 百家乐公试打法| 杨筠松 24山 图| 百家乐赢家打法| 百家乐赌场论坛| 威尼斯人娱乐城 老品牌值得您信赖| 百家乐官网包赢技巧| 关于百家乐切入点| 百家乐官网庄闲作千| 百家乐实战路| 百家乐台布哪里有卖| 澳门百家乐官网自杀| 百家乐智能软件| 泉州市| 百家乐首页红利| 大发888娱乐城网页版lm0| 百家乐官网五湖四海娱乐城| 大发888官网注册| 百家乐官网一黑到底| 大发8888娱乐城| 网上百家乐官网赌博出| 波音娱乐城送彩金| 百家乐代理打|